Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Components of a MOSFET Datasheet:

...

  1. Operating Junction and Storage Temperature Range.

    1. Most important item in the absolute maximum ratings list.

    2. Most MOSFETs are rated either at a maximum +150°C or +175°C junction temperature.

  2. Junction-to-Case thermal resistance RθJC.

    1. Example: Thermal resistance of 0.50 °C/W means that for each watt of power dissipated in the junction, the junction temperature will rise 0.5 °C above the case temperature.

  3. Drain-to-Source Breakdown Voltage.

    1. MOSFET can be controlled below the breakdown voltage.

    2. As long as the voltage across drain-to-source is below the threshold, the drain current will not exceed its threshold (there is uncertainty if this voltage limit is exceeded).

    3. Most MOSFETs aren’t used up to its full rated voltage; instead, derating in the 60-70% range is common (inductive spikes may exceed the breakdown voltage)

  4. Static Drain-to-Source On-Resistance RDS(on)

    1. Used to ensure that the voltage drop across the switch is acceptable given a specific current level.

    2. If you are using a MOSFET as a switch and cannot meet the on-resistance spec, don’t use it. 

    3. Example: If you supply a logic output from 3.3V system to the MOSFET via the gate, you cannot MOSFETs spec’d at 4.5V, since there’s not enough voltage to guarantee a full turn-on. Simply using“5V” logic (a logic 1 (HIGH) from a 3.3 V device will be at least 2.4 V Logic Levels - learn.sparkfun.com) doesn’t mean the actual output high voltage will be 5V.

    4. That’s why logic-level MOSFETs are generally specified at 4.5V Vgs, to ensure your output high level is above this threshold.

    5. Failing to meet the Vgs spec may lead to the drain-to-source resistance being generally higher than the RDS(on) spec.

  5. Gate Threshold Voltage VGS(th).

    1. Voltage at which the MOSFET just barely starts to conduct.

    2. Example: The IRFP260N lists 2.0-4.0V for a drain current of 250uA. Concluding that a VGS of 4.5V is sufficient to turn the device on is WRONG. You need the full 10V. 

    3. However, it is useful formaking sure the device is off, where zero voltage between gate and source is ideal to hold the MOSFET off. (This is IDEAL, but no no gate driver is perfect in that regard)

    4. If the driven gate voltage is below the minimum gate threshold of 2.0V, might be acceptable to turn a MOSFET off, and less than threshold current will flow.

    5. Good for power applications, but for signal applications, a quantity such as 250uA is a large number, and most MOSFETs won’t stay completely off (RESEARCH THIS MORE)

  6. Gate Charge.

    1. Determines how fast the MOSFET will switch from ON to OFF and back.

    2. Just divide total gate charge by the gate driver current to determine this time.

    3. Example: With a I have a 1A gate driver, 234nC will take up to 234ns to turn completely on or off.

  7. Turn-on, Rise, Turn-off, and Fall times.

    1. Useful only for understanding the minimum switching times.

    2. Usually gate drive circuit won’t switch as fast as these numbers, and are helpful only as a rough frame of reference.

...

  1. VDS < 0, the body diode conducts (check image)

    Image RemovedImage Added
  2. VDS > 0 but sufficiently low (CHECK THIS), the body diode conducts (check image)

  3. VDS is high but below the breakdown voltage, the MOSFET acts like a constant current sink (current into the circuit which it drains to ground)

  4. VDS is above the breakdown voltage, anything can happen; the MOSFET is likely to conduct.

...