Competition Year | 2022-2023 Aerial Evolution of Canada Student Competition | ||||||
---|---|---|---|---|---|---|---|
Team | Waterloo Aerial Robotics Group | ||||||
Architect(s) | |||||||
Status |
| ||||||
Last date updated | 15 Feb - ZP-CV communication and CV search referenceAirside Power Architecture with Specific Rails and Limits | ||||||
On this page |
|
...
Servos connect to I/O Output and follow AETR, L->R
1/2/3/4 Aileron (LO/LI/RI/RO)
5/6 Elevator (LE / RE)
7/8 Rudder (LR / RR)
Motors connect to FMU 1-5
Mot X : FMU X
FMU 6/7 for Aux Lighting
FMU 8 for Video Mux
Telem 1 → OSD
Telem 2 → RFD900x
will need external Power
CAN1 → Hereflow
GPS1 → M9N
VN300 → GPS2 OR Telem 3
Power Architecture
...
panelIconId | 26a1 |
---|---|
panelIcon | :zap: |
panelIconText | ⚡ |
bgColor | #4C9AFF |
...
The drone will run a 12S power system.
VBatt Dirty (For ESC’s)
12V Dirty (For Flight Controllers & Jetson)
5V Dirty (for servos, LED’s, etc)
5V Clean (for VTX, Sensors, etc).
All dirty power rails will be broken out from the flight battery using a PDB (i’m a fan of this one if we need a COTS PDB) , while the clean power rail will be broken out of the 3s batteryThe specific sources and rails are listed below:
VBAT (4x Turnigy 6S LiPo batteries, 2 pairs in series, each pair connected in parallel.):
APD PDB500[X] (500A continuous limit):
12S rail (Total current draw: 300A MAX):
V505 KV260 Lift Motors x 4 (60A MAX each)
AT4130 230Kv Push Motor x 1 (60A MAX)
12V rail (3A limit. Total current draw: 2.3A MAX):
RGB LED strip (~1.7A MAX)
DC Cooling Fan (0.59A MAX)
5V rail (3A limit. Total current draw: 1.4A MAX):
Pixhawk 6
HS-311 Servo Motors x 8 (1.3A MAX)
Cytron H-Bridge Driver (0.1A MAX)
Pixhawk 6 (5V step-down from 12S BEC):
Turnigy 3S Battery
A detailed description of how each device is being powered and which connector type is outlined in the following document: Power Distribution Architecture.
Wiring
All of the wires for the sensors will be pre-run through the frame in dedicated channels, with connectors left exposed near the sensor compartments and the avionics compartment. This means that any time a sensor needs to be replaced, we do not need to re-wire the entire sensor. this also means that when we need to re-wire the flight computers, we can use the cables that are already connected to the interface connectors an simply plug in a few large connector banks to our dev interfaces. Running more cables through the channels should be supported, but all necessary cables should hopefully be routed during assembly (or when it is easiest).
...