...
Inspiration
Who
Anthony Luo digital device selection, IOC verification, firmware & software
Daniel Puratich schematic capture, power supplies and architecture, PCB layout, most symbols & footprints
Nathan Green Sahil Kale high level reviewers
Anthony Lazar some components
Where
https://warg.365.altium.com/designs/AA237602-825E-4CD7-BE7B-1078E9369164#design
TODO: Add github link when done
Timeline
Desired for Competition in 2025 so ideally boards are fully assembled by end of Fall 2024.
Hardware design will be completed before midterms for midterm PCBA order in F24 term.
Daniel Puratich is intend on fighting to make this happen and is encouraging anyone to help by breaking this down into green comments for subtasks in the schematic (if viewing in the future please see the version history in Altium 365 for how I did this).
Features we aren’t adding but considered
no ELRS
ELRS changes a lot quickly
could be saved for a future revision
can be done via a simple connector to any COTS module
no cameras
mounting a camera makes placement complicated
Features
Begin from RPI Interface Rev B
Keep the UART “killswitch” and one UART passthrough for the RPi to FC direct
Being implemented in the stm though instead of the hardware switch
This is being done to avoid running out of UARTs on the STM and to avoid hardware complexity
UART forwarding can be done with DMA so it can be fast and not very resource intensive.
Justification for this as a feature is given in RPI Interface Rev B .
Keep UART LED indicators
this is nice for debugging
costs some board space
could be DNPed in a final version
Keep CAN circuit
this can be used to control the lighting system if we wanted to?
Could also connect to pixhawk for mavlink over CAN if we’re able to do the required firmware to make this solve.
Add LED features
Some neopixels on the board might be nice.
Leds on the pwr rails since I have space.
IR detector so we could use one of those cheap remotes to control LEDs.
Analog Monitoring
STM has some spare analog pins so might as well use them
temperature and voltage monitoring
Add an LTE modem to RPi interface rev c
quectel module he put
Quectel gets USB into the RPi and the STM. RPi eill be used initially and is drawn below because it requires less custom firmwqre, but using the stm long term seems nice.
Selected to get maximum mavlink datarate out of the Pixhawk
This is not intended to be able to stream data for “groundside compute” for autonomy processing as explained in https://uwarg-docs.atlassian.net/wiki/spaces/ARCHS22/pages/2669412363/Autonomy+Compute+Integration+2025?search_id=fe948f35-631d-416c-b4d9-095d8cab5e37.
Change buck converter to support 48V input so we can connect VBATT
this makes architecture decisions and harnessing easier
Switch STM32
STM take in the three uarts form quectel
The other STM is smaller and doesnt have enough UARTs for this
STM will communicate with the RPi over SPI
Increase board size a bit
this turns the board into a full normal RPi hat
This is required for cooling for the LTE module and a simple USB connection for the LTE hat
Why
Unlimited range & unlimited datarate is really attractive even if it comes at the cost of some weight and some power consumption.
Maintaining C2 link is required for flight so full reliance on ELRS is scary even if we have overwhelming evidence for it’s reliability
This board is an RPi hat because there is good COTS software support for the Quectel that runs on the RPi. The presence of the STM allows us to experiment with using the embedded proccessor but this will take a lot of time to bring up.
Eventually this board can be used as a standalone without the RPi to save weight. We want the Pi for airside compute now, but could be cool to try it in the future
The reason for the STM is that it’s real time and guaranteed run time and low power operation. See here.
Dual bucks is done because it’s hard to find ICs that do up to 7 A without external FETs & compensation. I want this to work right off the bat though in theory higher efficiency is achievable
Standards
...